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A cluster expansion renormalization group method in real space is developed to 
determine the critical properties of the percolation model. In contrast to previous 
renormalization group approaches, this method considers the cluster size dis- 
tribution (free energy) rather than the site or bond probability distribution 
(coupling constants) and satisfies the basic renormalization group requirement of 
free energy conservation. In the construction of the renormalization group trans- 
formation, new couplings are generated which alter the topological structure 
of the clusters and which must be introduced in the original system. Predicted 
values of the critical exponents appear to converge to presumed exact values as 
higher orders in the expansion are considered. The method can in principle be 
extended to different lattice structures, as well as to different dimensions of space. 

KEY W O R D S :  Disordered systems; percolation; nonlocal degrees of freedom; 
renormalization group theory. 

1. INTRODUCTION 

The  u n d e r s t a n d i n g  of  the physical  p roper t i es  of  d i so rde red  systems is a 

p r o b l e m  of f u n d a m e n t a l  i m p o r t a n c e  which has a t t r ac ted  m u c h  a t t en t ion  in 
recent  years, tl' 2) 

The  s implest  mic roscop ic  m o d e l  of  d i so rde red  systems is the perco la-  

t ion model .  13~ The  pe rco la t ion  m o d e l  descr ibes  the b e h a v i o r  of  a large 

system, the e lements  of  which  are  l inked in a r a n d o m  way. In the case 

in which the n u m b e r  of  l inks present  in the system is small ,  connec t i on  

be tween  widely  separa ted  po in t s  c a n n o t  occur ,  whereas  when  the n u m b e r  

of  links is sufficiently large,  such a connec t i on  exists and  the system is said 

to be percola t ive .  The  t r ans i t ion  be tween  these regimes occurs  at a defini te  
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value of the number of links present. If p is the probability that a link is 
present, the percolation transition occurs at a critical value p,., which is a 
critical point characterized by diverging fluctuations. 

Such a phase transition thus appears to be a simple example for the 
application of renormalization group theory, c4~ However, as will be shown 
below, the apparent simplicity of the percolation model is deceptive and, 
due to the nonlocal character of its degrees of freedom, one meets with 
difficulties of a new kind when attempting to develop a renormalization 
group method in real space for the percolation model. In fact, in contrast 
to the case of interacting systems such as the Ising model (see Section 4), 
and in spite of many attempts, no satisfactory renormalization group 
method has been developed directly for the percolation model, i.e., without 
using its formal equivalence with other models. 

In the present paper, the development of such a method is described. 
Following a brief description of the percolation model in Section 2, Sec- 
tion 3 reviews critically the previous direct approaches based on real space 
renormalization group methods. Section 4 describes the fundamental 
requirements which a renormalization group theory for the percolation 
model should satisfy. The development of a new renormalization group 
method in real space will be described in Section 5. 

2. PERCOLATION MODEL 

Consider the site percolation problem on an infinite lattice, in which 
each site is either occupied with probability p or empty with probability 
I - p ,  independently of all other sites. Occupied sites are either isolated 
from one another or form groups of nearest-neighbor connected sites called 
clusters.15 

Percolation is fully characterized by the behavior of clusters; one is 
therefore naturally led to consider cluster observables, and the problem 
consists in evaluating their average value, To calculate the values of various 
cluster observables, one may introduce a generating function or cluster size 
distribution, which may be considered as being equivalent to the free 
energy of a magnetic system in the presence of an external magnetic field c61 

1 
f (p,  h) = ~" ~ Pill(P) exp( - h  I~1) (2.1) 

I;'1 

where Pl~,l(P) is the probability that an arbitrary fixed site belongs to a 
finite cluster of size I~'1, and h is the external field. The external field is 
represented by an external site independently connected by a bond to each 
lattice site in a random way, a bond being present with probability 1 - e  -h 
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and absent with probability e-h. The function f (p ,  h), according to whether 
h is zero or not, represents the average number of clusters per site in the 
absence or presence of the external field h. The probability PIrI(P) may be 
expressed as a function of p as 

PIrI(P) = ~ A i~.1. Io1.1PI~'I( 1 _p)larl (2.2) 
Id~'l 

where Ale.j. la~.l is the number of clusters of size 171 and of perimeter 1371 
containing an arbitrary fixed site. 

The coefficients A l~,l. le~.l contain all the information concerning the 
structure of the lattice, and an exact calculation of these coefficients would 
thus represent an exact solution of the percolation model. Such a solution 
is possible, however, only when we assume that the lattice has a simple 
structure. For example, for the Bethe lattice (Cayley tree), where there are 
no loops or cycles, computation of the coefficients A i~,i. ia~,i represents a 
combinatorial problem which can be solved exactly. ~7) 

The derivatives o f f ( p ,  h) with respect to h at h = 0  determine the 
average values of other interesting observables. (5, 8) For example, f(l)(p,  0) 
is the probability that an arbitrary fixed site belongs to a finite cluster. The 
percolation probability Pio~l(P), that is, the probability that an arbitrary 
fixed site belongs to an infinite cluster, is thus given by 

PI~I(P) =P _ f(t)(p, O) (2.3) 

f~2)(p, 0) represents the average size of finite clusters containing an 
arbitrary fixed site and, in general, f~")(p, 0) represents the average value 
of the (n - 1 )th power of the cluster size. 

The coherence length in the percolation model is defined by the 
asymptotic behavior of the two-point correlation function, which gives 
the probability that two sites on the lattice belong to a like finite cluster. 
The coherence length can therefore be interpreted as the average diameter 
of the finite clusters. It diverges at the percolation threshold P=Pc, at 
which an infinite cluster first appears in the system as p increases. 

The behavior of the percolation model in the critical region near Pc is 
described in analogy to phase transitions of interacting systems by power 
laws and the associated critical exponents a, /~, v, and ~: 

f ( p ,  O) = ( p - p c )  2-" 

Pio~I(P, O) = (p -p~)~ 
(2.4) 

~ ( p , O ) = ( p - p , . ) - "  

f(2)(p, O)= (p-p~)-~'  
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3. P R E V I O U S  R E N O R M A L I Z A T I O N  G R O U P  A P P R O A C H E S  

Several renormalization group methods have been proposed to study 
the percolation model. The percolation model, although a trivial one from 
the point of view of the statistical mechanics of interacting models, belongs 
in fact to a class of quite sophisticated disordered models, which are 
equivalent to effective nonrandom interacting models generally more 
complicated than Ising-like models. 

Various methods have been used to express disordered interacting 
systems in terms of effective nonrandom Hamiltonians. For the percola- 
tion problem, it has been shown 161 that the limit q ~  1 of the q-state 
Potts model is formally equivalent to the percolation model, and several 
renormalization groups have been developed for the percolation model 
using this formulation. With the q-state Potts model described by a field 
Hamiltonian with cubic interactions, the e-expansion is performed about 
the upper critical dimension de= 6 of the latter, yielding the critical 
behavior of the percolation transitionJ 9~ As the method is a formal expan- 
sion about six dimensions of space, it cannot, however, be accurately 
extended to the physically interesting cases of two or three dimensions of 
space. The q --* 1 limit has also been used by other authors who studied the 
Potts model with Kadanoff's variational renormalization groupJ I~ 

The equivalence of the percolation model to the Potts model is formal, 
making it difficult to develop a physical understanding of the geometric 
properties of the percolation clusters; furthermore, the Potts formulation of 
the percolation model does not allow one to readily study any of the 
important physical applications of percolation. 

A different approach, which avoids these drawbacks, consists in 
developing a renormalization group method for the percolation model in 
real space. Many such renormalization group methods in real space have 
been proposed to study the percolation model. They make use of either 
decimation, ell) Migdal_Kadanoff, t12) or site-to-cell transformations. 

Among the site-to-cell transformations, the method of Reynolds et 

aL ~13) is, in its analytic form for the site and bond problems, a one-cell 
approximation for the site or bond probability distribution in which inter- 
cell correlations are neglected. In a later development, larger cells t'4) were 
considered, using, in particular, Monte Carlo sampling techniques. 

Another one-cell method is the block cluster theory, ca) originally 
developed in two and three dimensions and later extended to higher dimen- 
sions.C15, 16) Block cluster theory does, in a heuristic way, take into account 
intercell correlations by simulating the shape of large clusters in the 
original system at the level of one cell. 

Other one-cell transformations have been proposed by developing new 
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rules for defining cell occupation, ~171 or by adding new coupling constants 
such as connections between sites via bonds~181; the one-cell approximation 
for the site and bond probability distributions has also been extended to 
two cells. Hg~ 

The most important criticism common to all these real space methods is 
that they consider the coupling constants (site and bond probability distribu- 
tions) and directly construct renormalization group equations for them, 
instead of considering the free energy (cluster size distribution) of the system 
and, summing over its degrees of freedom at short distance, consequently 
deriving renormalization group equations for the coupling constants. 

Because of this fundamental shortcoming, all existing real space renor- 
malization group methods for percolation have never been considered 
satisfactory. For reasons which shall become clear below, difficulties of a 
new type appear when one attempts to formulate a real space renormaliza- 
tion group for the percolation problem. In the next section, we shall 
describe these difficulties in detail. 

4. F U N D A M E N T A L  R E Q U I R E M E N T S  OF A 
R E N O R M A L I Z A T I O N  G R O U P  FOR PERCOLATION 

We first discuss the fundamental requirements which a renormaliza- 
tion group method must satisfy. This discussion will indicate the way to 
construct a real space renormalization group for the percolation problem. 

The properties a renormalization group transformation must possess 
are c2~ existence, elimination of degrees of freedom, unitary, and smoothness. 

Unitarity amounts to the preservation of the thermodynamic proper- 
ties of the system under the renormalization group transformation. In 
particular, it is essential that the partition function or, equivalently, the 
total free energy of the system, be conserved under the renormalization 
group transformation. To understand the difficulties associated with the 
unitarity requirement for the percolation problem, it will prove useful to 
compare percolation to nondisordered interacting systems, and recall the 
basic relation upon which the real space renormalization group method 
developed by Niemeijer and van Leeuwen ~2~'2z~ for the Ising model of a 
ferromagnet is based, namely 

e tr~s'~ = ~ e H's'' ~ (4.1) 

This equation expresses the mapping of the Hamiltonian of an Ising model 
to that of a new Ising model in which spins are grouped into cells of length 
L and a spin degree of freedom s' is attached to each cell; H(s', a) is the 
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Hamiltonian H(s) of the site system where the site spin variables s are 
expressed in terms of new variables s' and a, and H'(s') is the Hamiltonian 
of the cell system. The renormalization group equation (4.1) is readily seen 
to satisfy the unitarity requirement by summing both sides of Eq. (4.1) 
over s'. 

It is essential for our purposes to observe that all the degrees of 
freedom in both the site and the cell systems, i.e., s, a, and s', are local 
degrees of freedom attached to a site or to a cell, and that the renormaliza- 
tion group equation (4.1) is obtained by partially summing over these local 
degrees of freedom in the original system. 

In the percolation problem, the free energy per site, which represents 
the average number of clusters per site, is given, in the presence of an 
external field h, by 

1 Io~1 pl~,l(1 _ p)t~,te-h t~,l (4.2) f (p ,  h ) = ~  ~ ~, Ah, i. 
I1'1 1O~'l Y 

which immediately follows from inserting (2.2) into (2.1). The essential 
observation is that the summations in the right-hand side of (4.2) are to be 
performed over nonlocal quantities: to wit, the size I~1 and the perimeter 
1O~'l of all clusters containing an arbitrary fixed site. Thus the degrees of 
freedom in the percolation model are nonlocal and span all ranges of the 
system. This is in strong contrast to the case of the Ising model, where, as 
seen above, the summation is over local degrees of freedom. 

Because of the existence of these nonlocal degrees of freedom, it is not 
possible for the percolation model, as it is for the Ising model, to perform 
a summation over degrees of freedom at short distances in the original 
system and obtain, even in principle, an accurate renormalization group 
equation of the type of Eq. (4.1). Summing over short-ranged degrees of 
freedom in the percolation problem, without taking into account the fact 
that the degrees of freedom in the system span all ranges, leads to a renor- 
malized cluster probability distribution of a given cluster which contains 
only partial information about the system and not, as in the case of the 
Ising model, to the Boltzmann probability distribution. Clearly, the proce- 
dure will be dependent on the structure of the lattice and the topological 
structure of the clusters will not be preserved upon renormalization, so that 
the free energy conservation (unitarity) requirement will be violated as 
well. 

The only way in which one can deal with this essential aspect of the 
percolation problem is to consider all ranges of the degrees of freedom in 
the process of elimination of degrees of freedom at short distances. 

Since the nonlocal degrees of freedom in the system are the cluster 
degrees of freedom, we must consider the clusters themselves in the process 
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of constructing our renormalization group. An exact mapping will be 
defined between clusters in the original and renormalized systems, and for 
that purpose clusters will be grouped into classes according to their 
topological structure. In the present context the expression "topological 
structure" refers to the connectedness of the clusters as defined by the 
various couplings. As will be seen in the following section, in which we 
describe in detail the technical aspects of this problem, the generation upon 
renormalization of new types of couplings will alter the topological struc- 
ture of the clusters of the renormalized system as compared to the 
topological structure of the clusters in the original system and, accordingly, 
new coupling constants must be added in the original system. This will 
ensure that the topological structure of the clusters is preserved upon 
renormalization, amounting to the conservation of the free energy. 

Of the requirements mentioned at the beginning of this section, we 
have considered elimination of degrees of freedom and unitarity. We turn 
next to the requirement of smoothness. In the process of summing over 
short-distance degrees of freedom, we will also be summing over nonlocal 
variables [Vl and I~vl, and this may lead to nonanalytic renormalization 
group equations, in particular for an infinite system. However, we can still 
sum over nonlocal variables on a finite system and obtain analytical renor- 
malization group equations. The cluster expansion, (22) which is performed 
on increasingly large, but finite clusters (in the sense of cluster expansion), 
will provide the ideal framework for such a task. 

5. REAL SPACE RENORMALIZAT ION GROUP M E T H O D  

5.1. General Method  

As described above, the unitarity requirement of the renormalization 
group transformation amounts, for the percolation problem, to the preser- 
vation of the topological structure of the clusters. The renormalization 
group transformation is constructed exactly for clusters (in the sense of 
cluster expansion) consisting of a finite number of sites (cells). To perform 
the summation over the short-ranged degrees of freedom while taking into 
account cluster degrees of freedom, a mapping is defined between the 
clusters in the original system and those in the renormalized system, which 
satisfies the following requirements: (1) each cluster in the original system 
should be mapped into one and only one cluster of the same topological 
structure in the renormalized system; (2) to every cluster in the renor- 
malized system, there should correspond at least one cluster of the same 
topological structure in the original system. 
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Starting from the site percolation problem, in which only nearest- 
neighbor couplings between sites are present, new couplings will be 
generated upon renormalization. In the original system, only nearest- 
neighbor site couplings are present, in the sense that it is only possible to 
flow from one occupied site to its nearest-neighbor occupied site; in order 
to flow from a given occupied site to its next-nearest-neighbor occupied 
site, it is necessary to flow first through a nearest-neighbor site, which must 
be occupied, and then flow from the latter to the next-nearest-neighbor 
occupied site. However, this is no-longer the case when we sum over 
degrees of freedom in the original system and define the renormalization 
group mapping to the cell system. 

To illustrate this, consider the case of the square lattice, in which the 
sites are grouped into cells of edge length L = 2 (see Fig. 1), and consider 

Fig. I. Grouping of sites of the original system into blocks of edge length L = 2. Sites of the 
renormalized system are denoted by X. 
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the example of a four-cell cluster (in the sense of cluster expansion) as 
shown in Fig. 2. A d-dimensional cell will be considered occupied when it 
contains a cluster of occupied sites which spans the cell in all d directions. 
In Fig. 2, cells 1 and 4 are thus occupied, while cells 2 and 3 are empty. 
Although cell 3 is empty, it enables one to flow from cell 1 to cell 4, which 
are next-nearest neighbors; that is, a next-nearest-neighbor coupling is 
generated in the renormalized system. This next-nearest-neighbor coupling 
is not present in the original system. In order to define a rigorous mapping 
between the clusters in the original system and those in the renormalized 
system, new coupling constants must therefore be introduced in the original 
system; for example, to account for the generation of next-nearest-neighbor 
coupling constants, diagonal bonds must be introduced in the original 
system. 

We will thus have to take into account the contribution from different 
clusters to each type of coupling: this will provide us with a natural way 
to classify the clusters. To each class of clusters in the renormalized system, 
there will correspond a class of clusters of the same topological structure 
in the original system. Next, we consider the probability distribution of 
each class of clusters and sum over short-distance degrees of freedom in the 
original system; the result of the summation over short-distance degrees 
of freedom in the original system for each class of clusters leads to the 
probability distribution of the corresponding class of clusters in the renor- 

Fig. 2. Illustration of generation of new couplings upon renormalization. In this example, 
cells 1 and 4 are occupied and connected, while cells 2 and 3 are empty. 
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malized system. This leads to the implicit renormalization group equation 
for the coupling constants. In this respect, the present approach is com- 
parable to that developed by Niemeijer and van Leeuwen 121" 22~ for the two- 
dimensional Ising model of a ferromagnet, where the summation over 
short-distance degrees of freedom for different classes of configurations 
leads to the renormalization group equations for the different coupling 
constants; that is, nearest-neighbor, next-nearest-neighbor, etc. 

The analytic construction of the renormalization group mapping is 
simple for the smallest clusters (in the sense of cluster expansion), i.e., those 
containing one or two cells, but becomes more difficult for clusters (in the 
sense of cluster expansion) containing three or more cells. At each step of 
the cluster expansion, one obtains renormalization group equations of the 
form 

Pli~(pb, rb, sb, . . . )=Pli)(p,r ,s , . . . ) ,  i = 1 , 2 , 3  ..... k (5.1) 

where P~") (P"~) is the probability distribution of the ith class of clusters 
in the renormalized (original) system, p, r , s  .... denote the couplings 
(nearest-neighbor, next-nearest-neighbor, etc.) in the original system, and 
Pb, rb, sb .... denote the couplings (nearest-neighbor, next-nearest-neighbor, 
etc.) in the renormalized system. The renormalization group equations 
(5.1) are expected to give rise to a single nontrivial fixed point 
(p*, r*, s*,...) defined by 

P* =Pb =P  

r * = r b = r  

S*~Sb~S 

etc. 

which are solutions of Eqs. (5.1). Linearization of these equations about the 
fixed point yields k eigenvalues, of which only one is expected to be larger 
than one. c2~ This eigenvalue, 2 ,  determines the thermal exponent y,: 

y, = In 2,/ln L (5.2) 

Up to this point, the external field, which is independently coupled to each 
site, has been set equal to zero. The field exponent is obtained by studying 
the response of the system to a variation of the external field about 
h * =  0. ~22~ One may write 

6[Ptot(Pb, rb, sb,...; hb)] Ip.. r-. a. = 6[Ptot(P, r, s,...; h)] Ip-. r*. a. (5.3) 
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where Ptot and P,ot are the sums over the k terms in Eqs. (5.1), and where 
h is nonzero. Linearization of Eq. (5.3) with respect to h about h * = 0  
yields the field exponent 

Yh = In 2h/In L (5.4) 

It is readily seen that, by summing over k both sides of Eqs. (5.1), we 
obtain, up to regular terms, the total free energy of the original and renor- 
malized systems. This shows that the renormalization group equations (5.1) 
satisfy the unitarity requirement. Note that Eq. (5.3) will clearly be non- 
analytic at the critical point of an infinite system. However, each of the 
Eqs. (5.1) need not be singular at the critical point of an infinite system. 

5.2. Square  Lat t ice  

Consider the site percolation problem on the square lattice with 
nearest-neighbor connections, where the sites are grouped into cells of edge 
length L = 2 (Fig. 1). 

5.2.1. One - C e l l  A p p r o x i m a t i o n .  For the one-cell approxima- 
tion, no new couplings will be induced by the renormalization group 
mapping. Therefore there is only one class of topologically distinct clusters 
(clusters with nearest-neighbor site couplings). 

For the one-cell approximation in the absence of the external field, 
the mapping between the clusters in the original system and those in the 
renormalized system, which consists of a single cluster, leads to the 
renormalization group equation 

P(Pb) =Pb 
(5.5) 

p(p) = p4 + 4p3(1 _ p )  

The renormalization group equation (5.5) is readily analyzed. There are 
three fixed points: 

p* = 0  

p*=l 

p* = 0.768 

The first two fixed points are trivial and correspond to the lattice being 
either completely" empty or completely occupied, respectively. The third 
fixed point is not trivial. The eigenvalue 2, of the linearized equation (5.5) 
is 2, = 1.64, which leads to 

y ,=0.71 (5.6) 
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and the coherence length exponent is v = (y , ) -  1 = 1.40. The field eigenvalue 
2, and the field exponent Yh are also readily evaluated, as described in 
Section 5.1, with the result 2h= 3.45, leading to [see (5.4)'] 

Yh = 1.79 (5.7) 

where Yh is indeed the fractal dimension d: of the percolation clustersJ 5) 

5.2.2 .  T w o - C e l l  A p p r o x i m a t i o n .  For the two-cell approxima- 
tion, as for the one-cell approximation, no new couplings will be induced 
upon renormalization. 

The renormalization group equation reads, in the absence of an 
external field, 

P(Pb) =p2 
(5.8) 

p(p) =pS + 8p7(1 _ p )  + 14p6(1 _p)_, 

This renormalization group equation has again three fixed points: 

p* = 0  

p * = l  

p* = 0.789 

The value of the thermal exponent is given again by linearization of 
Eq. (5.8) about the nontrivial fixed point p*, which leads to the critical 
exponent 

v = 1.42 (5.9) 

The field exponent (fractal dimension) is in this case given by 

df= 1.81 (5.10) 

5 .2 .3 .  Three-Cel l  Approx imat ion .  It is first for the three-cell 
approximation that new couplings are generated in the renormalized 
system and, correspondingly, the unitarity requirement of renormalization 
group theory will lead to the addition of new couplings in the original 
system. Two new couplings are generated, as shown in Fig. 3. Figure 3a 
illustrates a cluster in which cell 2, while not occupied, contains an 
occupied site which establishes a connection between next-nearest-neighbor 
occupied cells 1 and 3. This corresponds to the generation of a next- 
nearest-neighbor coupling between cells l and 3. Consequently, in order to 
preserve the topological properties of the original system upon tenor- 
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malization, a new coupling, that is, a diagonal coupling, is introduced in 
the original system. Figure 3b illustrates a cluster where cell 1 is occupied, 
but is not connected to its nearest-neighbor occupied cell 2. This corre- 
sponds to the generation of a bond coupling between nearest-neighbor 
occupied cells 1 and 2 in the renormalized system. In the case of Fig. 3b, 

Fig. 3. Illustration oi" generation of new couplings by the renormalization group transforma- 
tion corresponding to Eqs. (5.11)-(5.13). Here �9 (O)  denotes occupied (empty) site or cell. 
(a) Cluster showing the necessity of introducing next-nearest-neighbor coupling: cells 1 and 3 
are occupied and connected via cell 2, which is empty. (b) Cluster in original system showing 
the necessity of introducing nearest-neighbor bond coupling: two nearest-neighbor cells 1 and 
2 are occupied, but not connected. Empty bond coupling is shown by the broken line. 

822/76/I-2-33 
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the bond coupling must be specified to be absent, as shown by the hatched 
line. Consequently, in order to preserve the topological properties of the 
original system upon renormalization, a new coupling, that is, a bond 
coupling between nearest-neighbor sites, is introduced. The addition of 
these new couplings allows the construction of a precise mapping between 
the clusters of the original and renormalized systems. 

There are in this case three classes of topologically distinct clusters. The 
first class contains those clusters in which all nearest-neighbor cells that are 
occupied are connected by nearest-neighbor couplings of the original site 
model. In the second class, diagonal couplings are generated, while the third 
class includes clusters in which nearest-neighbor bond couplings are 
generated. 

Each cluster in the renormalized system belongs to one and only one 
of the three classes. To each of these three classes corresponds a class of 
clusters of the same topological structure in the original system. Any subset 
of one of these three classes of clusters in the original system maps into one 
and only one cluster in the renormalized system. This mapping is surjective 
("onto") and defines the renormalization group equation for the proba- 
bility distributions of the corresponding classes of clusters, which, in the 
absence of an external field, read 

P n n ( P b ,  rb ,  __ 3 2 3 2 db) -- Pbrbdb + pbrb(1 -- dh) + 2p~rb[rb(1 --Pb)(1 -- db) 

+ rbdb(l --Pb) + (1 -- rb) db(l --Ph) + (1 -- db)(l -- rb)] 

= P , , ( p ,  r, d)  (5.11 ) 

Pbo.d(Pb, rb, do) =p2 db[r~(1 --Pb) + rb(1 - rb)(l --Pb) 

+ rb( 1 - -  r b ) ( l  --Pb) + ( l - -  rb )  2 ] 

= P b o n d ( P ,  r ,  d) ( 5 . 1 2 )  

P. . . (Pb,  rb, db)= pb3 rb(1 --rb)db 

= P , , , ( p , r , d )  (5.13) 

The subscripts nn and nnn stand for nearest-neighbor and next-nearest- 
neighbor, respectively; p (Pb) is the probability that a site (cell) is occupied, 
r (rb) is the probability that a nearest-neighbor bond is present between 
two sites (cells), and d (db) is the probability that two next-nearest- 
neighbor sites (cells) are connected by a diagonal bond. The left-hand sides 
of Eqs. (5.11)-(5.13) are most conveniently derived by referring to Fig. 4. 

The exact determination of the functions of P, . (p ,  r, d), P , , , ( p ,  r, d), 
and Pbo,d(P, r, d) in Eqs. (5.11)-(5.13) requires a large number of clusters 
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Class 1 

Class 2 

Class 3 

Fig~ 4. Classes of clusters in renormalized system ['or the three-cell approximation corre- 
sponding to Eqs. (5.11)-(5,13). 
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to be counted. This calculation is performed exactly on a computer in 
which all clusters are enumerated and classified as described above. 

The renormalization group equations (5.11)-(5.13) give rise to a single 
nontrivial fixed point (p*, r*, d*) given by 

p* = 0.794 

r* = 0.632 

d* = 0.487 

Linearizing both sides of Eqs. (5.11)-(5.13) about the fixed point 
(p*, r*, d*)  enables us to obtain the thermal exponent by determining the 
eigenvalues of the 3 x 3 matrix 

Opb Orb Odb Or Od 

OPbond OPbond OPbond OPbond OPbond 
(5.14) 

p*, r*. d* 

Opt, Orb Odb 

OP... OP... OP... 

Opb Orb Od o 

The eigenvalues of this matrix are 

t 
OP.. 

Op 

. OPbond 
0p 

0P , , .  
0p 

Or Od 

OP... OP 
Or Od p*, r*, d* 

21 = 1.646 

22 = 0.594 

23 = 0.387 

Only one eigenvalue, 2,, is relevant, i.e., larger than unity. The thermal 
exponent is given by 

y , = l n  2,/ln 2=0.72  (5.15) 

which yields the correlation length exponent v = 1.39. 
The field eigenvalue and exponent are obtained by studying the 

response of the system to a variation of the external field about h* = 0, as 
described above in Section 5.1. One finds 

2h = 3.58 (5.16) 

leading to 

y , = l n  2,/ln 2 = 1.84 (5.17) 
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Table I. Results for  the Percolation Model  on the Square L a t t i c e  ~ 

One cell Two cell Three cell Four  cell 

v a~ v a~ v as v a~ 

1.40 1.79 1.42 1.81 1.39 1.84 1.36 1.89 

u Conjectured exact values are v = 4/3 and dr= 1.89. 

5 . 2 . 4 .  F o u r - C e l l  A p p r o x i m a t i o n .  For the four-cell approxima- 
tion, as in the case of the three-cell approximation, two types of couplings 
are generated upon renormalization: bond coupling and a next-nearest- 
neighbor coupling. Unfortunately, enumeration of all possible clusters 
on this system now requires the consideration of a very large number of 
clusters. This very large number of enumerations precludes at this time an 
exact calculation of the four-cell approximation. The present results are 
obtained while neglecting the diagonal coupling. 

In this case, the renormalization group equations read 

Pnn(Pb, rb) = Pn.(p,  r) 
(5.18) 

Pbo,d(Pb, rb) = Pbo,d(P, r) 

One finally obtains 

v = 1.36, dr= 1.89 

The numerical values of the critical exponents predicted by the present 
method are summarized in Table I. 

6. CONCLUSION 

We have described the development of a new renormalization group 
method for the percolation model. In contrast to previous real space 
renormalization group approaches, this method considers the cluster size 
distribution (free energy) rather than the site or bond probability distribu- 
tions (coupling constants). The method satisfies the basic renormalization 
group requirements described in Section 4, in particular the conservation 
of the free energy. 

The m e t h o d  shows in a transparent way how renormalization 
necessarily leads to the generation of new couplings, including couplings 
between next-nearest-neighbor sites and bond couplings, and thus demon- 
strates in a simple way that the site and bond percolation models belong 
to the same universality class. 
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The results of the cluster expansion method have been obtained 
through the four-cell approximation (in the latter case, the next-nearest- 
neighbor couplings were neglected) for the square lattice (see Table I). The 
predictions appear to converge toward the presumed exact values as higher 
orders in the expansion are considered. The square lattice has been chosen 
for the sake of convenience; the case of the triangular lattice is more 
involved numerically and is currently under study. 
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